2 research outputs found

    The Segmented Colour Feature Extreme Learning Machine: Applications in Agricultural Robotics

    Get PDF
    This study presents the Segmented Colour Feature Extreme Learning Machine (SCF-ELM). The SCF-ELM is inspired by the Extreme Learning Machine (ELM) which is known for its rapid training and inference times. The ELM is therefore an ideal candidate for an ensemble learning algorithm. The Colour Feature Extreme Learning Machine (CF-ELM) is used in this study due to its additional ability to extract colour image features. The SCF-ELM is an ensemble learner that utilizes feature mapping via k-means clustering, a decision matrix and majority voting. It has been evaluated on a range of challenging agricultural object classification scenarios including weed, livestock and machinery detection. SCF-ELM model performance results were excellent both in terms of detection, 90 to 99% accuracy, and also inference times, around 0.01(s) per image. The SCF-ELM was able to compete or improve upon established algorithms in its class, indicating its potential for remote computing applications in agriculture

    Fast object detection in pastoral landscapes using a Colour Feature Extreme Learning Machine

    No full text
    Object detection is an essential function of robotics based agricultural systems and many algorithms exist for this purpose. Colour although an important characteristic is often avoided in place of faster grey-scale implementations or is only used in an rudimentary arrangement. This study presents the Colour Feature Extreme Learning Machine (CF-ELM), which is an implementation of the extreme learning machine (ELM), with a partially connected hidden layer and a fully connected output layer, taking three colour inputs instead of the standard grey-scale input. The CF-ELM was tested with three different colour systems including HSV, RGB and Y'UV and compared for time and accuracy against the standard greyscale ELM. The four implementations were tested on three different datasets including weed detection, vehicle detection and stock detection. It was found that the colour implementation performed better overall for all three datasets and the Y'UV was best performing colour system on all tested datasets. With the Y'UV delivering the highest accuracy in weed detection at 84%, 96% in vehicle detection and 86% in stock detection. Along side the CF-ELM, an algorithm is introduced for desktop based classification of objects within a pastoral landscape, with individual speeds between 0.06s and 0.18s for a single image, tested within each colour space. The algorithm is designed for use in a scenario that provides difficult and unpredictable terrain, making it ideal for use in an agricultural or pastoral landscape
    corecore